Electrical Power Systems

 $\mathcal{B}y$

Prof. Dr. Eng. Mohamed Ahmed Ebrahim Mohamed Consultant of New and Renewable Energy Systems

E-mail: mohamedahmed_en@yahoo.com

mohamed.mohamed@feng.bu.edu.eg

Web site: http://bu.edu.eg/staff/mohamedmohamed033

Lecture (3)

Course Code: EPE 215

Study Hours: 2 Lect. + 2 Tut + 2 Lab

Assessment:

Final Exam: 90 marks (50%).

Year Work & Quizzes & Midterm: 60 marks (33.33%).

Oral & Practical: 30 marks (16.67%)

Textbook:

1- M. S. Naidu, High Voltage Engineering, 2009.

2- B. L. Theraja, A textbook of electrical and technology in S. I. System of units, Vol. III

3- Hadi Saadat, Power System Analysis

Syllabus

- Introduction.
- AC and DC Transmission Systems.
- AC and DC Distribution Systems.
- Substations and circuit breakers.
- Interconnections of power systems.
 - Electrical and Mechanical Design of Transmission Lines.
 - Insulators and Voltage Distribution.
 - Underground Cable Systems.
- Overvoltage in Electrical Power Systems.
- Protection of individuals, equipment and power system installations.
 - Protective devices and insulation co-ordination.

Transients and dynamics of over voltages in high-voltage systems

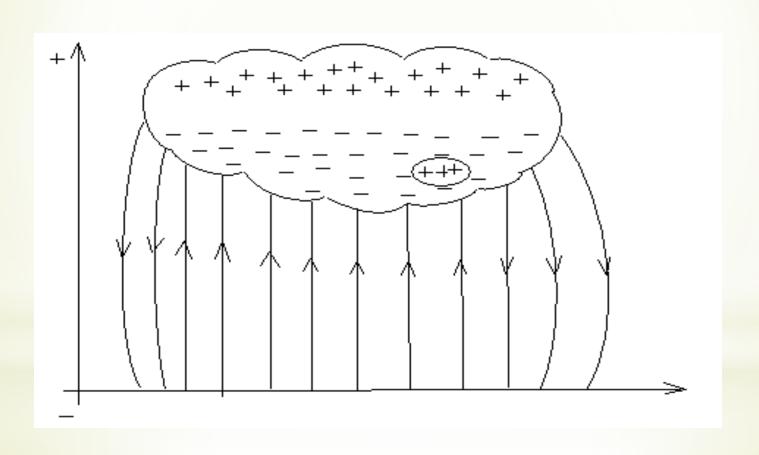
LIGHTNING

- *Causes of over voltage
- *Lightning phenomenon
- *Charge formation of Lightning
- *Rate of Charging of thunder cloud
- *Mechanism of Lightning strokes
- *Characteristics of Lightning strokes
- *Factors contributing to good line design
- * Protection afforded by ground wires.
- * Tower footing resistance
- * Interaction between lightning and power system
- * Mathematical model of Lightning

Causes of Lightning

- *Lightning phenomenon
 - peak discharge in which charge accumulated in the cloud into neighboring cloud or to the ground

* Electrode separation – cloud to cloud or cloud to ground is about 10 km or more

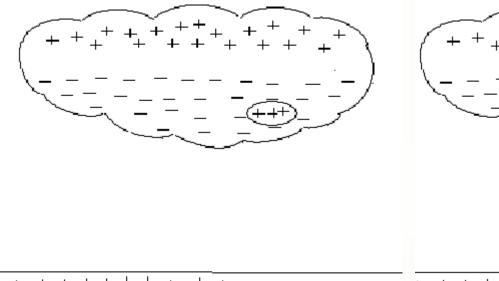

CHARGE FORMATION OF CLOUD

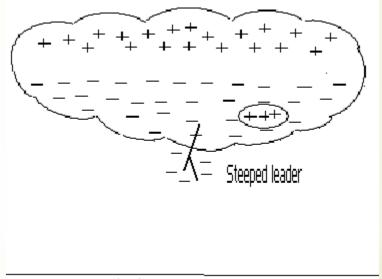
- * Positive and negative charges become separated by heavy air current with ice crystals in the upper part and rain in the lower region.
- *Charge separation depends on height of cloud (200 10,000m).
- *Charge centers at a distance about 300 2km

CHARGE FORMATION OF CLOUD

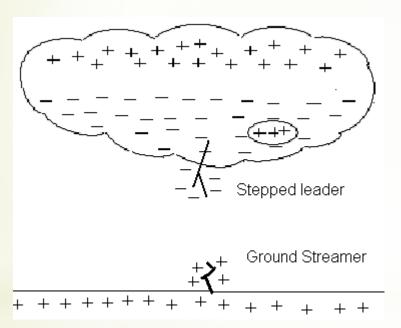
- * Charge inside the cloud 1 to 100 C
- * Cloud potential 10⁷ to 10⁸ V
- * Gradient within a cloud 100 V/cm
- * Gradient at initial discharge point 10kV/cm
- * Energy at discharge 250 kWhr

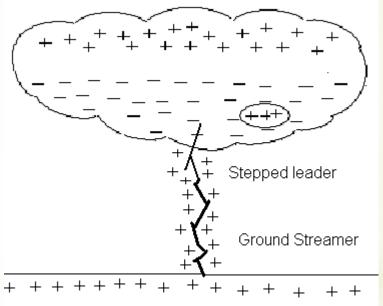
CHARGE FORMATION OF CLOUD


MECHANISM OF LIGHTNING FLASH


*Pilot streamer and Stepped leader

*Ground streamer and return stroke


*Subsequent strokes


PILOT STREAMER AND STEPPED LEADER

GROUND STREAMER AND RETURN STROKE

CHARACTERISTICS OF LIGHTNING STROKES

- *Current-time characteristics
- *Time to peak or Rate of rise
- *Probability distribution of current and time
- *Wave shapes of lightning voltage and current

LIGHTNING CURRENT

*Short front time - 10µs

*Tail time - several ms.

RATE OF RISE

- *50% lightning stroke current greater than 7.5kA/µs.
- *10% lightning strokes current exceeds 25 kA/µs.
- *Stroke current above half value more than 30µs.

SURGE VOLTAGE

- *Maximum surge voltage in transmission line 5MV
- *Most of the surge voltage is less than 1000 kV online.
- *Front time -2 to $10 \mu s$
- *Tail time -20 to $100 \mu s$
- *Rate of rise of voltage 1MV/ µs

LIGHTNING STROKES

*Direct stroke

directly discharges on to transmission line or line wires

*Induced stroke

cloud generates negative charge at its base, the earth object develop induced positive charge

OVER VOLTAGE DUE TO SWITCHING SURGES

INTRODUCTION

- *In switching, the over voltage thus generated last for longer durations and therefore are severe and more dangerous to the system
- *The switching over voltages depends on the normal voltage of the system and hence increase with increased system voltage

ORIGIN OF SWITCHING SURGES

- *Making and breaking of electric circuits with switchgear may results in abnormal over voltages in power systems having large inductances and capacitances.
- *over voltages may go as high as 6 times the normal power frequency voltage.

ORIGIN OF SWITCHING SURGES

*In circuit breaking operation switching surges with a high rate of rise of voltage may cause repeated restriking of the arc between the contacts of a circuit breaker, thereby causing destruction of the circuit breaker contacts.

*Switching surges may include high natural frequencies of the system, a damped normal frequency voltage component, or restriking and recovery voltage of the system with successive reflected waves from terminations.

CHARACTERISTICS OF SWITCHING SURGES

- *De-energizing of transmission lines, cables, shunt capacitor, banks, etc.
- *Disconnection of unloaded transformers, reactors, etc.
- *Energization or reclosing of lines and reactive loads.
- *Sudden switching off of loads.
- *Short circuit and fault clearances.
- *Resonance phenomenon like ferro-resonance, arcing grounds, etc.

CONTROL OF OVERVOLTAGES DUE TO SWITCHING

*Energization of transmission lines in one or more steps by inserting resistances and withdrawing them afterwards.

*Phase controlled closing of circuit breakers.

*Drainage of trapped charges before reclosing

*Use of shunt reactors.

*Limiting switching surges by suitable surge diverters.

PROTECTION AGAINST OVERVOLTAGS

- *Minimizing the lightning overvoltages are done by suitable line designs,
- *Providing guard and ground wires,
- *Using surge diverters.

PROTECTION AGAINST OVERVOLTAGS

- *Shielding the overhead lines by using ground wires above the phase wires,
- *Using ground rods and counterpoise wires,
- *Including protective devices like explosion gaps, protector tubes on the lines, and surge diverters at the line terminations and substations

Mohamed Ahmed Ebrahim